
Tabbed Interface
With Plain JavaScript

Finished Version
In this project you will create a simple tabbed
interface with an animated transition, from tab to
tab.

The Start File
The start file contains some basic HTML.

A div with an id for the tabs, an
unordered list with list items and anchor
tags will become the actual tabs, while
those anchor tags link to divs down the
page that contain the information that will
be shown for each tab.

Each tab has a few paragraphs inside it.

Styling Needed
To start you need some basic styles to set
up the tabs.

Styling the Tabs
Add these two rules to style the tabs...

Final CSS Rules
These final CSS rules will get the rest of the styling
in place. Notice the transition for the opacity. That is
what will actually create the animation.

Note that the classes of active, hidden and
visible are controlling what is shown. The basic
strategy will be to add, and remove classes to
these elements when the user clicks the tabs.

Add a click handler to each tab
Next, on the script file, add a click handler to
each tab. The very specific selector in the
querySelectorAll is so that you don't accidentally
grab any other elements.

The angle brackets (>) in the css selector mean
"direct descendant". You wouldn't want to also
grab anchor tags inside the tab content.

Changing the tab class
Add this code to the selectTab function. First,
prevent the default behavior of following the link.

Then in a loop, remove the class from all the
tabs, and finally, add it back on to the one that
the user clicked.

The new tab and the old tab
Add the lines highlighted in blue below.

The first two lines will tell us which is the new tab
that the user clicked on.

The second two lines hide the old tab by
applying the visually hidden class. Because of
the transition on the div for opacity, it fades out in
200 miliseconds.

Handling the switch
This is the tricky part of this script. You want to
wait until the transition ends, then set that
original content to hidden (which is display:
none).

You can do this by adding an event listener to
the old tab content that fires when the transition
is complete.

Then the new content will be able to fade in, but
this will have to be done in a special way, as
seen on the next slide.

Fading the new content in...
Add the code highlighted in blue to the event
listener. First the new tab content, meaning the
content that goes with the tab that was clicked, is
given two classes. The first sets it to display:
block, but the second sets the opacity to zero.

Then, after a VERY short amount of time, the
visuallyhidden class is removed, and the content
will fade in. This is necessary to get the fade to
work properly.

There is a bug to fix though. If you try it, you will
notice it.

Removing the Event Listener
Add the code highlighted in blue to the end of
the event listener.

Essentially, the flashing bug is happening
because the event listener is getting added and
then fired multiple times.

Setting once to true, means that the event
listener will be automatically removed, after it
fires once. Capture and passive can remain false.

This is it. It should be working properly. Now it is
just a matter of refactoring code.

Add the closure, and use const/let
To start with, add the closure show below, then
cut and paste the entire script inside the IIFE
closure, so that there are no global variables.

Then go through and change all the var
declarations to const or let.

The image below shows most of the script.

Use forEach instead of a for() loop
JavaScript has a method for arrays called
forEach. You can use this instead of the for loop.
It's a little easier to read.

Below You can see that the for loop has been
commented out, and the forEach method is used
instead.

The forEach method is applied to an array, and
has a callback function that it will run on each
element in the array.

You pass in each item, in this case, "tab", which
JavaScript can manipulate. In this case each tab
is getting an event listener.

Fix the other loop as well
The other loop can be switched to the forEach
method as well...

Arrow Functions
Arrow functions will be covered in detail in the
third course, but this is a good place to put a few
and try it out. Arrow functions can make the code
more compact and readable.

You can get rid of the word "function" and put =>
after the parentheses that go with the function.
Like this...

Further refinements
Further, if there is only one parameter passed in,
in this case "tab" you can get rid of the
parentheses as well...

This makes for a much more readable statement.
"Tabs, for each tab, add an event listener".

Now you can fix the other functions.

The whole
script...

(function(){

"use strict";

const tabs = document.querySelectorAll('#tabs > ul > li > a');

tabs.forEach(tab => { tab.addEventListener('click', selectTab); });

function selectTab(event){

event.preventDefault();

tabs.forEach(tab => { tab.removeAttribute('class'); });

event.target.className = 'active';

const thisTab = event.target.getAttribute('href');

const thisContent = document.querySelector(thisTab);

const oldTabContent = document.querySelector('.visible');

oldTabContent.className = 'visuallyhidden';

oldTabContent.addEventListener('transitionend', () => {

oldTabContent.className = 'hidden';

thisContent.className = 'visible visuallyhidden';

setTimeout(() => {

thisContent.classList.remove('visuallyhidden');

}, 20);

}, { capture: false, once: true, passive: false });

}

}());

