
Tabbed Interface
Using jQuery

End Result
The end result for this project will be a
nice simple tabbed interface that could
be included in any website.

The start file has the markup we need on it. This includes a div with the id set to “tabs”.

Then there is an unordered list with list items and links. These will make the actual tabs.

Then there is a div for each tab. Notice the href matches the ID of each div with and ID of tab. You
can add more tabs or change their href, just make sure the match the ID of the content that appears
in the tab. You can put in whatever content you like. I just have some text in each tab.

The Start File

There are a few basic styles already at the top of the page.
Let’s add to these to get the basic setup for the site in place.
For this demo, the entire tab interface will be 400px wide
and centered on the screen.

The bullets are removed from the list and display:
flex; puts the list items all in a line.

CSS
#tabs {

width:400px;

margin:auto;

}

#tabs > ul {

list-style-type:none;

display: flex;

}

Most of the styling happens on the actual
anchor tags.

It should look like this, but with more text...

Styling the Anchor Tags

#tabs > ul > li > a {

display: block;

height: 30px;

line-height: 30px;

margin-right: 2px;

background: #A2A2A2;

color: #CECECE;

text-decoration: none;

padding: 0 15px;

border-radius: 3px 3px 0 0;

}

Initially, all of the content areas for the tabs are hidden.
Set them to display: none .

Then you want the first div to display. That will be your
first tab and will come up displaying by default when the
page loads.

The anchor tag inside the first list item should have the
styling of the current active tab.

Finally, add some styling for the paragraphs, so that they
look a little better.

Final CSS Needed #tabs > div {

display: none;

padding: 15px;

background: #EAEAEA;

}

#tabs > div:first-of-type {

display: block;

background: #EAEAEA;

}

#tabs > ul > li:first-of-type a {

color: #333;

background: #EAEAEA;

}

p {

line-height: 1.5em;

margin-bottom: 1em;

}

Now it looks like our final product, but it does
not function yet. You will do that with jQuery.

Tabs with Styling

Start the jQuery by adding a click handler to the anchor tags. Use the child combinator selector angle
brackets because it is possible that someone might put an unordered list with list items and anchor
tags in the content of the tab, and you don’t want clicking those to trigger the change of the tab.

$("#tabs > ul > li > a").click(function(){/* code here */});

Add the anonymous function that will run when one of these links is clicked.

Starting the Script
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

<script>

$("#tabs > ul > li > a").click();

</script>

The first thing to do in the function, when a tab is clicked, is change the styling of all the tabs to the
inactive tab styling. Then change the one we clicked … $(this) … to the styling of the active tab.

Changing the Tab Colors
$("#tabs > ul > li > a").click(function(){

$("#tabs > ul > li > a").css({ "background" : "#A2A2A2", "color" : "#CECECE" });

$(this).css({ "background" : "#EAEAEA", "color" : "#333" });

});

Then get the HREF attribute for the link that was clicked and put it in a variable called “thisTab” for
easy access. You can add the alert and see what this gives you.

Getting the Tab that was Clicked
$("#tabs > ul > li > a").click(function(){

$("#tabs > ul > li > a").css({ "background" : "#A2A2A2", "color" : "#CECECE" });

$(this).css({ "background" : "#EAEAEA", "color" : "#333" });

const thisTab = $(this).attr("href");

//alert(thisTab);

});

Then take the div that is visible, in other words, the tab that is currently active
and showing, and fade it out.

Fade Out the Visible Tab
$("#tabs > ul > li > a").click(function(){

$("#tabs > ul > li > a").css({ "background" : "#A2A2A2", "color" : "#CECECE" });

$(this).css({ "background" : "#EAEAEA", "color" : "#333" });

const thisTab = $(this).attr("href");

$("#tabs > div:visible").fadeOut(200);

});

Once that div has completed the fadeOut animation, use the callback
function to fadeIn the div that matches the href for the link we clicked.

Fade in the New Tab
$("#tabs > div:visible").fadeOut(200, function(){});

$("#tabs > div:visible").fadeOut(200, function(){ $(thisTab).fadeIn(200); });

The Whole Script
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

<script>

$("#tabs > ul > li > a").click(function(){

$("#tabs > ul > li > a").css({ "background" : "#A2A2A2", "color" : "#CECECE" });

$(this).css({ "background" : "#EAEAEA", "color" : "#333" });

const thisTab = $(this).attr("href");

$("#tabs > div:visible").fadeOut(200, function(){

$(thisTab).fadeIn(200);

});

});

</script>

Summary
This is a great use of jQuery. The use of the
animation library is good here because it is not
something that is going to be very browser
intensive.

The last things to do with the script are to take
care of the best practices and do the following:

1. Put it in a separate linked file
2. Add the IIFE closure
3. Add the “use strict” directive
4. Link it in the head of the page with the

defer property set.

